	Question		Answer	Marks	Guidance
1	а		velocity against time	B1	Not 'speed' for velocity Not time against velocity Ignore units
	b		stress against strain	B1	Ignore units
	C		force / load / tension against length (of wire)	B1	Not force against <u>extension</u> Not 'weight' for force Not 'distance' for length Ignore units
			Total	3	

Question		on	Answers	Marks	Guidance
2	(a)		velocity = rate of <u>change</u> of displacement	B1	Allow $v = \frac{\Delta s}{\Delta t}$ where $\Delta s = \underline{change}$ in displacement $\Delta t = time$ (taken) Allow displacement travelled/time Allow 'velocity = displacement/time' when followed by 'velocity = rate of change of displacement' Not 'velocity = displacement/time' or 'distance/time' Not mixture of quantity and unit, e.g. change of displacement per second Not 'speed in a specific direction'
	(b)	(i)	speed = 70000/3600 KE = $\frac{1}{2} \times 130 \times \left(\frac{70000}{3600}\right)^2$	C1 C1	Note : speed = 19.4 (m s ⁻¹) will score this C1 mark
			kinetic energy = 2.5×10^4 (J)	A1	Note: Using 19.4 (m s ⁻¹) gives 2.446 × 10 ⁴ (J); hence an answer of 2.4 × 10 ⁴ (J) will score full marks Allow maximum of 2 marks if 19 (m s ⁻¹) is used – answer is 2.34 × 10 ⁴ (J) Allow 1 mark for $\frac{1}{2} \times 130 \times (70000/60)^2 = 8.84(7) \times 10^7$ (J) Note: No credit for $\frac{1}{2} \times 130 \times v^2$ with any other incorrect value for <i>v</i> , including <i>v</i> = 70 and 70000 Note: Bald answer of 2.5 × 10 ⁴ (J) scores full marks Note: If the correct equation for KE is written and then the squaring of the speed is omitted, allow ecf as shown below: $E = \frac{1}{2} mv^2 = \frac{1}{2} \times 130 \times 19.4 = 1.3 \times 10^3$ (J) $\checkmark \times \checkmark 2$ marks

Q	Question		Answers	Marks	Guidance
	(b)	(ii)	Mass of Mononykus is 1/8 (of the mass of an ostrich) or mass of Mononykus is 16 (kg). Correct reasoning: <u>Volume</u> decreases by (a factor of) 8 and <u>density</u> assumed to be the same.	B1 B1	Allow use of <i>V</i> for volume and ρ for density
			Total	6	

Q	uesti	on	Answers		Guidance
3	(a)	(i)	There is only a vertical force / weight is vertical / no horizontal force(s) / acceleration is vertical	B1	Not 'horizontal acceleration is zero' – since horizontal velocity is constant is given in the question
		(ii)	1 Correct sketch of the rebound path.	B1	Note : The ball must hit the ground closer to wall. The rebound path should be curved and below the original path.
			2 The time is the same.	M1	
			For both, the height / vertical distance and (vertical) acceleration are the same.	A1	Allow $s = \frac{1}{2}at^2$ with <i>s</i> and <i>a</i> are the same (for both)
	(b)		Drop the ball from a given height and measure time of fall.	B1	
			$s = ut + \frac{1}{2} at^2$ and $u = 0$ or $s = \frac{1}{2} at^2$	B1	Allow $a \equiv g$ and $h \equiv s$
			(The acceleration of free fall is determined using) $a = 2s/t^2$	B1	Note: <i>a</i> must be the subject to gain this B1 mark Note: $a = 2s/t^2$ will score the last two B1 marks Allow full credit for graphical approach: Drop ball from different heights & measure the times of fall (B1); plot a graph of <i>s</i> against t^2 (B1); $g = 2 \times$ gradient (B1)
	(c)	(i)	<u>Constant</u> deceleration or <u>uniform</u> deceleration or <u>constant</u> <u>negative</u> acceleration or <u>constant</u> rate (of change) of velocity	B1	Allow <u>constant</u> / <u>uniform</u> acceleration / acceleration is 2.66 (m s ⁻²) Allow 'constant rate of deceleration or acceleration' Not 'slowing down'
			(Momentarily) stops at 1.5 (s) or reaches maximum height at 1.5 (s)	B1	
			Clear idea of returning back. (AW)	B1	Allow : (The ball) goes up and (then) down (the ramp) Not : velocity changes sign or direction changes
		(ii)	distance = $\frac{1}{2} \times 4.0 \times 1.5$	C1	Note : Speed in range 3.0 to 5.0 (m s ⁻¹) and $v \neq 4.0$ (m s ⁻¹), then possible ecf
			distance = 3.0 (m)	A1	Allow 1 sf answer Allow full credit for correct use of equation(s) of motion Special case: total distance travelled is calculated; allow 1 mark for an answer of 6.0 (m)
			Total	12	

Question		stion	Expected Answers	Marks	Additional Guidance
4	a	i	work (done) / (elastic potential) energy	B1	Not: heat / gravitational potential energy / kinetic energy
		ii	displacement / distance	B1	
	b		 Any two from: Torque (of a couple) Moment (of a force) Work (done) / energy 	B1×2	Not: 'Couple' for 'torque' Allow: PE / KE
			Total	4	

5	Expected Answers	Marks	Additional Guidance
а	'heavy' and 'light' objects / different weights / different masses dropped (from leaning tower of Pisa) / rolled down incline plane	B1	Must use ticks on Scoris to show where the marks are awarded Not: 'dropping feather' / 'vacuum' / 'experiment on the Moon' for this first B1 mark but can score subsequent B1 marks
	Objects have the same <u>acceleration</u> (of free fall)	B1	Not : 'fall at the same rate / accelerates at the same rate / same speed'
	Objects hit ground at same time	B1	
b(i)	1 1		Note : There are no marks for just an answer, since this is a 'show' question
	$s = ut + \frac{1}{2}at^2$ and $u = 0 / 0.600 = \frac{1}{2} \times a \times (0.356)^2$	C1	
	$a = \frac{2 \times 0.600}{0.356^2}$	C1	Allow: 2 marks for correct substitution with 'a' the subject or a^{1}
	$a = 9.47 \text{ (m s}^{-2})$	A0	$0.600 = \frac{1}{2} \times a \times (0.356)^2$ followed by $a = 9.469$ (more than 3 sf) Note: Using ' $v = .600/0.356$ ' followed by $a = \Delta v / \Delta t = 4.73$ scores zero. (Watch out for $4.734 \times 2 = 9.47$)
b(ii)	Air resistance or drag / residual magnetism or 'sticky' electromagnet / trapdoor takes time to open	B1	Not : 'Experiment is not done in a vacuum' / 'friction/resistance'
b(iii)	A 'parabola shape' / graph of increasing positive gradient starting from <u>origin</u> and going through 0.356,0.6	B1	Judge the shape of the graph by eye. A horizontal line from 0.6 must cut the graph within the 'vertical zone provided by 0.356 s ' on the time axis
	Total	7	

Q	Question		Expected Answers	Marks	Additional Guidance
6	(a)	(i)	Both measured in metre/m	B1	Allow: Both have the same unit/Both have 'magnitude' Not: Both are distance/length
		(ii)	Distance is a scalar/does not have direction or Displacement is a vector/has direction	B1	Not: One is a vector and the other a scalar
	(b)	(i)	time = $\frac{3.6 \times 10^5}{170}$ time = 2.1(18) × 10 ³ (s) or 2.1 × 10 ³ (s)	B1	Note: Answer to 2sf or more is required
		(ii)	Correct vector triangle Eg: 360 (km) s	B1	The vector triangle must have at least two labels (360, 100 and s – allow x or d for s). The 'orientation' of the triangle must be as shown. Ignore the direction of the arrows.
			$s^2 = 360^2 + 100^2$ / $s = \sqrt{(360^2 + 100^2)}$	C1	
			s = 373.6 (km) / 370 (km)	A1	 Allow: Full credit can be given for a scale drawing 2 marks if answer in the range (370 – 380) 1 mark if answer in the range (360 – 370) or (380 - 390) Note: Bald answer to 2sf or more and no diagram scores 2/3 marks.
			Total	6	

Q	Question		Expected Answers	Marks	Additional Guidance
7	(a)	(i)	a = <u>gradient/slope</u> (of the line)	B1	Allow : $a = change$ in velocity/time or 'rate of <u>change</u> of velocity' Allow : Correct equation plus labels; $a = (v - u)/t$; $v = final velocity$, $u = initial$ velocity and $t = time$ Note : The term gradient/slope/change/ initial to be included and spelled correctly to gain mark
		(ii)	s = area (under the graph)	B1	
	(b)		area of 'rectangle' = ' <i>ut</i> ' area of 'triangle' = $\frac{1}{2} \times t \times (v - u)$	M1	
			area of 'triangle' = $\frac{1}{2} \times t \times at$	M1	Note: The second M1 mark is not for '1/2 at^2 ' but for '1/2 $\times t \times at^2$ Allow: 'Area of trapezium method': $s = \frac{1}{2}(u+v)t$ and $v = u + at$ M1 Correct substitution leading to correct answer M1 Note: Substitution method starting with $v^2 = u^2 + 2as$ scores zero
	(c)	(i)	$32 = \frac{1}{2} \times a \times 2.8^{2}$ $a = \frac{32 \times 2}{2.8^{2}}$	C1 A1	Note : The C1 mark is for substitution into the equation given in (b) with $u = 0$ Note : Bald answer of 8.16 (m s ⁻²) or 8.2 (m s ⁻²) scores 2/2 marks
			<i>a</i> = 8.16 (m s ⁻²) or 8.2 (m s ⁻²)		Bald 8 (m s ⁻²) scores $1/2$
		(ii)	Drag/air resistance/air friction (makes the time longer)	B1	Not: 'Reaction time'/'wind'
			Total	7	